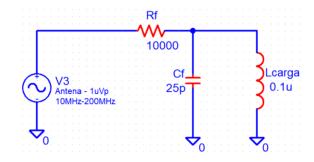

PSI3321 - Eletrônica Atividades para a Aula 16/17

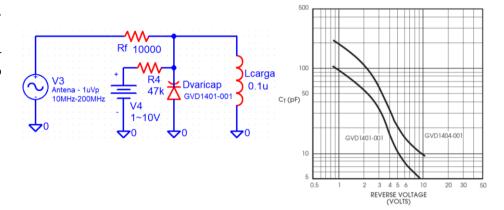
Tabela 3.1 RESUMO DASEQUAÇÕESIMPORTANTES PARAOPERAÇÃO DAJUNÇÃO pn.

Grandeza	Relação	Valores de Constantes e Parâmetro (para Si intrínseco a T = 300 K)
Concentração de portadores no silício intrínseco (/cm ³)	$n_i^2 = BT^3 e^{-E_G/k_T}$	$B = 5.4 \times 10^{31} / (\text{K}^3 \text{cm}^6)$ $E_G = 1.12 \text{ eV}$ $k = 8.62 \times 10^{-5} \text{eV/K}$ $n_i = 1.5 \times 10^{10} / \text{cm}^3$
Concentração de portadores no silício tipo n (/cm ³)	$n_{n0} \cong N_D$ $p_{n0} = n_i^2 / N_D$	Em Equilíbrio Térmico: $n_i^2 = n.p$
Concentração de portadores no silício tipo p (/cm ³)	$p_{p0} \cong N_A$ $n_{n0} = n_i^2 / N_A$	Em Equilíbrio Térmico: $n_i^2 = n.p$
Densidade da corrente de deriva (A/cm ³)	$J_{\text{deriva}} = q(p\mu_p + n\mu_n)E$	$\mu_p = 480 \text{ cm}^2/\text{Vs}$ $\mu_n = 1350 \text{ cm}^2/\text{Vs}$
Resistividade (Ω cm)	$\rho = 1/[q(p\mu_p + n\mu_n)]$	μ_p e μ_n diminuem com o aumento na concentração de dopantes
Densidade da corrente de difusão (A/cm ³)	$\begin{split} J_{p(Difusão)} &= -qD_p \frac{dp}{dx} \\ J_{n(Difusão)} &= +qD_p \frac{dp}{dx} \end{split}$	$q = 1,60 \times 10^{-19}$ Coulomb $D_p = 12 \text{ cm}^2/\text{s}$ $D_n = 34 \text{ cm}^2/\text{s}$
Relação entre mobilidade e difusividade	$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = V_T$	$V_T = kT/q$ $\cong 25 \text{ mV}$
Tensão interna da junção (V)	$V_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$	

- 1) Para a junção pn ao lado, pergunta-se:
- a) Ela está polarizada diretamente ou reversamente?
- b) Nesse caso, comparando com a situação em aberto, x_n , x_p e W aumentam? Diminuem? Ficam os mesmos?
- c) Se N_D = 1.10¹⁶ cm⁻³ e N_A = 1.10¹⁷ cm⁻³ e V_R =10V, qual o novo valor de W?



- 3) Considerando que a barra do exercício anterior tem uma seção $A = 250 \mu m^2$:
- a) Estime o valor de capacitância de junção (ou depleção) nesse caso sem utilizar nenhuma fórmula direta do livro
- b) Determine a capacitância de de junção (ou depleção) atrávés da expressão aplicando as inforrmade, apenas as que estão nesta folha de atividades.


$$C_{j0} = A \sqrt{\left(\frac{\varepsilon_{s}q}{2}\right)\left(\frac{N_{A}N_{D}}{N_{A} + N_{D}}\right)\left(\frac{1}{V_{0}}\right)}$$

$$C_j = \frac{C_{j0}}{\sqrt{1 + \frac{V_R}{V_0}}}$$

- 4) Considere o circuito ao lado. Qual a sua função?
- a) Você saberia estimar alguma frequência relevante?

- 5) Considere o circuito ao lado. Qual a sua função?
- a) Em que tensão devemos polarizar o Varicap para se assemelhar ao circuito da questão 4?
- b) Para que serve este circuito???

6. (Ex. 3.34) Um diodo tem N_A = 10^{17} /cm³, N_D = 10^{16} /cm³, n_i = 1,5 ´ 10^{10} /cm³, L_p = 5μ m, L_n = 10μ m, A = 2500μ m², D_p (na região n) = 10 cm^2 /Vs, e D_n (na região p) = 18 cm^2 /Vs. O diodo está diretamente polarizado e conduzindo uma corrente I = 0,1 mA. Calcule:

- (b) A tensão de polarização direta externa V_D e a tensão de barreira V_D
- (c) A componente da corrente devida à injeção de lacunas e aquela devida à injeção de elétrons através da junção
- (d) $\mathcal{T}_{p} \in \mathcal{T}_{p}$
- (e) a carga Q_p do excesso de lacunas na região n e a carga Q_n do excesso de elétrons na região p; e a carga total Q de portadores minoritários armazenada, e o tempo de trânsito τ_i
- (f) A capacitância de difusão.